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ABSTRACT: The four subtypes of adenosine receptors form relevant drug targets
in the treatment of, e.g., diabetes and Parkinson’s disease. In the present study, we
aimed at finding novel small molecule ligands for these receptors using virtual
screening approaches based on proteochemometric (PCM) modeling. We
combined bioactivity data from all human and rat receptors in order to widen
available chemical space. After training and validating a proteochemometric model
on this combined data set (Q2 of 0.73, RMSE of 0.61), we virtually screened a
vendor database of 100910 compounds. Of 54 compounds purchased, six novel
high affinity adenosine receptor ligands were confirmed experimentally, one of
which displayed an affinity of 7 nM on the human adenosine A1 receptor. We
conclude that the combination of rat and human data performs better than human
data only. Furthermore, we conclude that proteochemometric modeling is an
efficient method to quickly screen for novel bioactive compounds.

■ INTRODUCTION

The Adenosine Receptors. G protein-coupled receptors
(GPCRs) are membrane-bound proteins and targets for many
hormones and neurotransmitters in the body. As such, they are
ideal drug targets with a large degree of inherent selectivity due
to their tissue specific expression. The local hormone adenosine
interacts with four different GPCRs: the adenosine A1, A2A, A2B,
and A3 receptors. These receptor subtypes are involved in many
(patho)physiological processes, including diseases such as type
2 diabetes, heart arrhythmias, and Parkinson’s disease.1 In the
current work, we set out to identify novel small molecule
ligands for these adenosine receptors using virtual screening
approaches.
Proteochemometric Modeling. Different approaches

exist to select potentially bioactive compounds using computa-
tional models. Conventionally, a structure−activity model can
be created using known compounds.2,3 The obtained model
can then be used to predict the modeled output variable for
compounds that have not been experimentally tested on the
basis of the “Molecular Similarity Principle”, which states that
similar compounds show similar activity.4 However, in the case
of the adenosine receptors, we are dealing with multiple similar
targets rather than one target. Previously, it has been shown
that proteochemometric modeling (PCM)5−8 is able to create
robust predictive models for multiple similar targets.9−11 As has
been reviewed in detail before,7 PCM takes both ligand- as well

as target-similarity into account and can thereby also benefit
from the principle that “similar targets bind similar ligands”.
Given the ability of PCM models to also consider ligands active
on related receptors when predicting bioactivity against a
particular receptor, this increases the likelihood of identifying
both active compounds and novel active chemotypes. Hence,
we chose to create a PCM model trained on the adenosine
receptor subfamily rather than to train individual bioactivity
models. We hypothesized the PCM model to perform better
than these individual models and hoped to find both
compounds that are a selective ligand for a single receptor
but also compounds that are globally active ligands active on
the entire subfamily of human adenosine receptors.

Chemical Space and Target Space. Chemical space can
be characterized based on the similarity of the compounds that
interact with adenosine receptors. It is this space that is
exploited when a structure−activity model is created for one of
the receptors, as chemicals predicted to be closely located to
known ligands on a target are expected to be ligands of that
target. Target space can be characterized by the similarity of the
targets. It is this space that is exploited when a multiple
sequence alignment shows that the A2A and A2B adenosine
receptors are more similar than the A2A and A3 receptors
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(Supporting Information Table S1).12 Because PCM uses both
ligand and target to predict an output variable, it can thereby
also consider the fact that some features have different effects
on different targets to better fit the data.13,14 Therefore, our
hypothesis in the current work is that PCM models perform
better in prediction of values for data points that were not
originally in the training set when compared to conventional
structure−activity models, a principle that has been shown
before for different mutants of HIV reverse transcriptase.10

Inclusion of Multiple Species Orthologues. Historically,
rat tissues have been the source of adenosine receptors for the
testing of novel chemical entities before the human receptors
became available for in vitro testing.12 As a result, a large
amount of historical data is available on the rat orthologues
(identical receptors in other species) of the human adenosine
receptors including affinity data of small molecules (5397 data
points in ChEMBL 2).15 Recently, it has been shown that, in
general, small molecule binding is conserved between human
and rat orthologues. However, a species specific pharmacology
is observed for the A1 and A2A receptor; relative to human
receptors, the average pKi for the A1 receptor is −0.51 log units
while 0.41 log units for the A2A receptor.

16 Moreover, from the
full sequence similarity, it becomes apparent that rat and human
orthologues show greater similarity (identity 84% ± 8) than
human paralogues (similar receptors in the same species)
among each other (48% ± 7) (Supporting Information Table
S1).
As it has been previously shown that PCM can model

paralogue subfamilies,17,18 in this work we extend this approach
by proposing to include orthologues in the training set in order
to capture the chemical space associated with these orthologues
in the model as well while at the same time considering target
differences in the PCM model generation process. Through a
combined virtual and experimental screening, we hope to find
both novel selective ligands (active on a single receptor) and
novel global ligands (active on all human adenosine receptors),
as both of these ligand types are of interest to our research
team.

■ RESULTS AND DISCUSSION
Characterizing Both Target and Chemical Space.

Characterizing Target Space. Figure 1 shows the residues
selected as binding site displayed in the adenosine A2A receptor
crystal structure containing antagonist ZM241385 (PDB code
3EML).19 The figure displays the transmembrane (TM)
domains and extracellular loops (ELs) of the receptor.
Individual amino acid side chains have been visualized in a
ball-and-stick model. The green residues were obtained through
selection of a 5 Å sphere around the cocrystallized ligand, red
residues were obtained through two-entropy analysis (TEA)
(see below), and residues in gray/black occur in both analyses.
Figure 2 displays the results from a principal component
analysis (PCA) of the ligand binding pocket in all receptors.
The binding pocket was defined based on the same residues
that were used to train the final model, representing target space
(see Methods Overview for details). The PCA demonstrates
that our binding site retains the pattern from full sequence
similarity in which receptor orthologues are more similar than
paralogues. It should be noted, however, that the difference
between rat and human orthologues of the A3 receptor is much
larger than in any of the other three orthologue sets. This large
difference is in agreement with the fact that compounds found
to be active on the human A3 receptor were much less active or

even inactive on the rat A3 receptor.
1 Therefore a full clustering

of these two receptors based on the binding site would be
contradictory to what we know from the chemical space of the
two receptors, which is described below.

Characterizing Chemical Space. In addition to the analysis
of target space, we also performed a PCA on the structures of
all compounds (using the same descriptor as the final model)
we had available in our data set, or chemical space, comprising a
total of 10999 data points. The results are displayed in Figure 3,
and data points are grouped by orthologues. In the same way as
it could be observed in target space, a high similarity between
orthologues is also visible in the chemical (ligand) space.

Figure 1. The binding site we selected to define the target similarity as
visualized in PDB structure 3EML. The protein backbone is in gray
and the cocrystallized ligand (ZM-241385) in a ball-and-stick model.
The green residues were obtained through selection of a 5 Å sphere
around the cocrystallized ligand, red residues were obtained through
TEA analysis (see text), and residues in gray/black occur in both
analyses. Note that residues in both transmembrane domains and
extracellular loops were included.

Figure 2. Principal component analysis of the similarity in target space.
The adenosine receptor orthologues are more similar than their
paralogues. Human receptors are indicated with a black circle and rat
receptors by a white circle. Both A3 receptors are very different
(“outliers”), while the A2A and A2B receptors cluster together. This
observation is consistent with the fact that ligands active on the human
A3 receptor were often found to be inactive (or less active) on the rat
A3 receptor.

Journal of Medicinal Chemistry Article

dx.doi.org/10.1021/jm3003069 | J. Med. Chem. 2012, 55, 7010−70207011



Furthermore, it becomes apparent that the chemical spaces for
the A1 and A2A orthologues have been explored most
extensively, while the chemical space for the A2B orthologues
has been sampled rather sparsely. Finally, the chemical space
for the A3 orthologues is dominated by compounds measured
on the human orthologue, biasing in particular this data set of
active compounds. In fact, as mentioned earlier, it has been
hard to identify ligands (and in particular antagonists) that
exhibit affinity for the rat A3 receptor in previous work.1

The results from this PCA analysis show that there is
significant (however in no case complete) overlap in the
chemistry of the compounds that have been tested on the
human as well as rat adenosine receptor subtypes (chemical
space). Nevertheless, the number of identical compounds
tested per orthologue pair is rather low (at about 5% of the
total number of active compounds in our data set, Supporting
Information Table S2).
Likewise, we compared the chemical space between the

paralogues for both human and rat receptors (Supporting
Inforrmation Figure S1 and S2). The chemical space of
annotated compounds for paralogues in the training set is very
similar, with the exception of the A2B receptors. However, the
points are colored according to their affinity on the receptors
showing that the location of “high affinity hotspots” differs
between paralogues, while some hotspots are shared. This
observation of “high affinity hotspots” confirms that chemistry
alone cannot explain the affinity differences between receptors
but also that selective compounds can be found within the
training set, hence we expect our model to be able to predict
selectivity.

The analysis of chemical space gave us confidence that
bioactivity space between human and rat adenosine receptor
orthologues is similar enough to allow us the use of PCM
modeling approaches; still, it is also dissimilar enough to enable
the discovery of novel bioactive ligands by considering bioactive
space from both species in a single model.

Descriptor Selection and Model Training. Target
Descriptor. First, we identified the optimal selection method
of the receptor binding site. (For a flowchart of the performed
selections, please see Methods Overview; here, ECFP_4
fingerprints were employed as ligand descriptors, see Methods
Overview for further details.) In this part of the work, we had a
choice of six residue selection methods, two of which were
structure based; the first one by selecting residues within a 5 Å
sphere around the cocrystallized ligand in PDB structure
3EML,19 and the second one was identical but using a 7 Å
sphere. Furthermore, two selection methods were obtained
utilizing TEA algorithms, selecting residues that were classified
to be active in ligand recognition based on their evolutionary
entropy.20 Here we used a conservative approach (TEA S),
which selected a smaller number of residues and a less
restricted selection method (TEA L), which gave rise to a larger
number of residues selected for model generation. Finally, we
also evaluated two selection methods combining the 5 Å sphere
with TEA S and one combining the 5 Å sphere with TEA L.
The best performing selection found was a combination of a 5
Å sphere around the cocrystallized ligand along with the small
selection of TEA. This selection was named TEA S5
(Supporting information Figure S3 and Table S3).
During the optimization of our target descriptor by sampling

different residue selection methods, we found that a larger

Figure 3. Principal component analysis of ligand chemical space. This PCA shows the large overlap in ligands that have been tested on orthologue
pairs in the different species. The A1 and A2A receptors have the most densely populated chemical space, whereas A2B has been explored the least.
The space for the compounds tested on the A3 receptors is dominated by compounds tested on the human orthologue. Note that the further along
the x and z axes, the points become lighter, black points fade to gray, and gray points fade to white.
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selection is not always better. In fact, while the best performing
binding site definition consisted of a combination of the two
selection methods (crystal structure based and TEA based), it
was in both cases the smallest residue selection within each
method that performed optimally. Interestingly, we found that
we needed to combine the crystal structure selection and TEA
selection for optimal performance. In each individual selection
method, both in the method based on the crystal structure
alone and the method based solely on TEA, there was a pair of
orthologue receptors that gave rise to an identical fingerprint.
These were the A2A receptors when selecting either a 5 or 7 Å
sphere around the ligand in the crystal structure and the A2B
receptors when using the TEA based selection. However,
because it was still possible to create predictive models in each
individual case, it can be concluded that the activity space of
these orthologue receptor pairs is highly similar (also see
Supporting Information Figures S1 and S2).
Ligand Descriptor. Similar to the method used to identify

the best descriptor binding site, we also identified the ligand
descriptor giving rise to best modeling performance. Bender et
al., in their analysis of descriptor space, have shown that there is
little difference between circular fingerprint performance, and in
this work similar results were obtained.21 Our models identified
the extended connectivity fingerprint using Sybyl atom typing
(SCFP_4) to be the best-performing compound descriptor on
this data set (with an external validation RMSE of 0.70 log units
and R0

2 of 0.67) with three others close in performance. Those
were FPFP_6 (RMSE 0.70 log units and R0

2 0.68), EPFP_6
(RMSE 0.68 log units and R0

2 0.69), and SPFP_6 (RMSE 0.69
log units and R0

2 0.69) (see Supporting Information Figure S4
and Table S4). Also in predictive power, i.e., the performance
estimates in the cross-validation compared to the external
validation, the different fingerprints perform very similar but
SCFP_4 better correlates to the external validation than in the
others (see Supporting Information Figure S4 and Table S4).
We found this to be of high importance as we did not want to
embark on a “wet” experiment without having a fair estimate of
model performance on unknown compounds.
Cross-Validation. Finally, we sampled different cross-

validation approaches by varying the amount of subdivisions
in each cross-validation step. We observed that in the case of 5-
fold cross-validation, the cross-validation parameters are slightly
worse compared with the external validation parameters, with a
cross-validated RMSE of 0.70 log units versus an RMSE for the
external validation set of 0.68 log units. In addition, the Q2 is
0.69 in the cross-validation and the R0

2 is 0.71 in the external
validation (Supporting Information Figure S5). When we
increased the number of subdivisions, and hereby decreased the
size of the fraction left out of the training during cross-
validation, this phenomenon was reversed. Hence the cross-
validated RMSE is slightly lower compared with RMSE in
external validation (0.68 versus 0.70) and the Q2 is slightly
higher compared with R0

2 (0.70 versus 0.69). This can indicate
slight overtraining, as shown by Baumann,22 which is the reason
why we choose to implement 5-fold CV in the final model
training procedure.
Final Model Training. The final model was trained on the

full data set of eight receptors and 10999 annotated data points.
Given the preliminary results listed above, the model was built
using SCFP_4 compound fingerprints and the TEA S5 residue
selection. The training plot of the final model is shown in
Figure 4, obtaining an R0

2 of 0.95 and an RMSE of 0.26. The
cross-validated parameters, which constitutes a performance

estimate, were a correlation coefficient (Q2) of 0.73 and a
prediction error (CV_RMSE) of 0.61 log units. This final
model, created in Pipeline Pilot 8.5,23 is provided in the
Supporting Information. Furthermore, we also included in the
Supporting Information two tables showing the 25 sub-
structures that have the largest positive (presence of these
substructures leads to a higher pKi, Supporting Information
Table S5) or largest negative effect on pKi (on average presence
of these substructures leads to a lower pKi, Supporting
Information Table S6). Finally, we have added the average
effect on binding of the presence of the most occurring
substructures. The top 100 most occurring substructures and
their average effect on binding when present are given in
Supporting Information Table S7.
The training plot of the final model, Figure 4, shows that

especially compounds in the high pKi region (larger than 9)
seem to be predicted more accurately. However, several
compounds in this area, marked with a black circle, have
been found to be underpredicted by a large margin. Upon
identifying the outliers, it was discovered these three points
contained the same structure. Further literature studies showed
that the outliers are all from Jacobson et al.24 and that the
original paper states that two of these compounds have been
tested on the rat A2A receptor, whereas ChEMBL 2 list them
annotated to the human A2A receptor. Moreover, the binding
affinity values from this particular paper are much higher (pKi
larger than 8.0) when compared with the affinity values these
compounds and a large number of highly similar other
compounds have on average in other papers (smaller than
7.0 and sometimes even smaller than 6.0). In Supporting
Information Table S8 are further details, i.e., the affinity of
these particular compounds and a number of similar
compounds in the training set. It would seem to be a
reasonable explanation that these questionable values were
experimental artifacts and a database annotation error.
However, because this effect only occurs sporadically and
only in the cases of these 8-cyclohexylcaffeine derivates, we
decided to keep the data points in the final model. It should be

Figure 4. Cross-validation plot of our final model correlating measured
and predicted receptor affinities (pKi values). The CV parameters were
a Q2 of 0.73 and a CV_RMSE of 0.61. The model fit had an R0

2 of 0.95
and corresponding RMSE of 0.26. For an analysis of the outliers in the
black circles, see the Discussion section.
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noted that our model was able to pick up these outlying
experimental values. However, another consideration was that
exhaustive checking of all 10999 data points was practically
infeasible.
In Silico Model Validation. Before applying our model in

any virtual screening setup, we performed several computa-
tional validation steps to ensure model predictivity and to
prevent chance correlations from occurring. The learning
curves (Supporting Information Figure S6) showed that the
maximal performance obtained was a prediction error of 0.62
log units (and corresponding R0

2 of 0.71). In addition, learning
curves generated based on only the chemical space (conven-
tional structure−activity models rather than PCM models)
showed that PCM is better able to model the ligand−target
affinity than conventional single-target bioactivity models
(Supporting Information Figures S7 and S8). The final model
showed fair performance in external validation (Supporting
Information Figure S9). It should be noted that our external

validation consisted of compounds only tested on the human
receptors. Interestingly the RMSE improved from 0.88 log
units, when rat data was excluded from model training, to 0.82
log units, when these data were included (with the R0

2

improving from 0.23 to 0.28).
Furthermore, the model showed good performance in the

decoy validation because 33 of the 43 known actives were in the
top 50 retrieved from 4556 decoys (Supporting Information
Figure S10), with a runtime of 43 s. The highest predicted
compound was LUF5957 with a predicted pKi of 9.02 (hA1)
and an experimentally determined pKi of 9.14 (hA1). See
Supporting Information Table S9 for the structures of the four
highest predicted decoys at rank 15, 21, 24, and 26.
The 100-fold y-scrambled models plot shows a negative

intersect with the Y-axis for both the R0
2 and Q2 regression lines

as suggested to be characteristic for a predictive model by
Eriksson et al. (Supporting Information Figure S11).25

Table 1. Structures of the Newly Identified Human Adenosine Receptor Ligandsa

aReceptor affinity as determined in radioligand binding studies is shown as Ki value in μM or % displacement at 10 μM. Between parentheses, the
SEM in μM and the ligand efficiency (LE, see text) is shown in kcal/mol per heavy atom. Also shown is the most similar compound in the training
set (and the receptor it was annotated to) calculated as Tanimoto Similarity using the SCFP_4 fingerprint. Both entirely novel and atypical bioactive
compounds have been identified (structures 3 and 4), as well as a fragment-like compound (structure 5) and a ligand with nanomolar activity
(structure 6).
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The results from the different experiments show that the
model appears to be statistically sound in nature. Several
conclusions can be drawn from these results already. First, it is
difficult to train a model on public data gathered from a
multitude of assays performed in different laboratories (also
shown by Kramer et al.).26 Second, our model is not based on
chance correlations and has predictive power. Finally, the
pooling of data points from testing on rat receptors with data
points from testing on human receptors has a positive effect on
model performance. The RMSE improved from 0.88 to 0.82
upon inclusion of rat bioactivity data, likely by the inclusion of a
much larger chemical space. Given the satisfying performance
of our final model, we employed it in the next step to select
novel potential adenosine receptor ligands from a chemical
supplier, namely ChemDiv.
Experimental Validation. In Vitro Model Validation. In

our final “wet” experimental validation, we ordered 54
compounds that were indicated as active by our model on
one or more of the adenosine receptors (see Supporting
Information SD file and Table S10). These 54 compounds were
subsequently tested on all four human adenosine receptors
(216 data points). Out of the total of 54 compounds tested, six
compounds were novel active compounds for the adenosine
receptors (displacement larger 50% at a concentration of 10
μM, corresponding to a hit rate of 11%). Among the
compounds were both selective ligands and highly active
binders. For all six compounds active on either the human A1 or
human A2A receptor in single-dose experiments, full displace-
ment curves were recorded, yielding Ki values. Furthermore, the
pseudo-Hill coefficient was determined using variable slope
regression in Graphpad Prism.27 (The pseudo-Hill coefficients
are listed in the Supporting Information along with all dose−
response curves.)
Very diverse chemistry can be identified among the ligands

found by our PCM model which are shown in Table 1. Two of
the hits we found (compounds 1 and 2) have a structure that
resembles structures of known adenosine receptor ligands.
However, compound 3 and 4 have a structure that is not typical
for compounds that are active on the adenosine receptors.
Compound 5 shows a high affinity (0.90 μM on the human A1
receptor and 0.30 μM on the human A2A receptor) even though
it is a very small fragment-like compound (MW 196). Finally,
compound 6 even reached nanomolar affinities, even though no
modifications or optimizations were performed on this
compound. Note that the Tanimoto similarity to the training
set based on the SCFP_4 fingerprint is as low as 0.30 in the
case of compound 3 and reaching a maximum of 0.80 in the
case of compound 5. Furthermore, for two of the identified hits,
the compound that is most similar in the training set has been
annotated on the rat (A1) receptor, further underlining the
added value of the combination of human and rat orthologues.
For additional details concerning the average and minimal
similarity of the identified hits, please see Supporting
Information Table S11. Shown in Figure 5 are the curves
used to determine the affinity of compound 6 on the human A1
receptor. The full set of curves is contained in the Supporting
Information.
Implications on PCM Performance. Because compounds

3−5 do not have a typical adenosine receptor template
structure, we conclude that the PCM models obtained in this
work are able to explore novel regions of bioactive chemical
space. The ability of the model to find novel compounds is very
likely the result of the larger chemical space covered in the

training set in comparison with a conventional structure−
activity model. (For a comparison of PCM and conventional
structure−activity learning curves, see Supporting Information
Figures S7 and S8.) Together with the improved performance
in the experimental validation, we show here the advantage
PCM has due to its ability to characterize the full ligand−target
interaction space.
However, while the PCM technique should in theory be able

to predict bioactivity spectra, our experimental results indicate
that our current model could not do so on the current data set.
We were able to find active compounds and also selective
compounds, but the compounds did not show selectivity as
predicted by our model.
Furthermore, only one compound was found active on the

human A3 receptor despite the fact that the model initially
identified a much large number of compounds to have a pKi
larger than 7.0 on the human A3 receptor than on the other
thee human receptors (see Experimental Section for details
about compound selection). It is likely that this indicates that
the model is not able to accurately model the bioactivity space
for this receptor, in particular when we consider the large
dissimilarity to the rat A3 receptor.1 The large dissimilarity
combined with the low hit rate on the human A3 receptor could
indicate that the binding site definition is inaccurate. However,
it should be noted that this definition was based on only a
single adenosine A2A receptor crystal structure. As there are
now more than a dozen GPCR crystal structures available,
perhaps these can be used to better define the ligand binding
site.
These two observations about the performance of the PCM

model, the hit rate of 11% and the low performance for the
human A3 receptor, serve to illustrate that bioactivity models,
like this model, are mainly a tool to assist in the process of
medicinal chemistry. However, this tool can be a very powerful
tool as illustrated by the discovery of novel active compounds
in the current work.
While this manuscript was completed, Langmead et al.

published a structural virtual screening approach applied to the
human adenosine A2A receptor, identifying one out of 10 hits
similar to compound 6, subsequently optimized to be selective
(for the structures see Supporting Information Figure S12).28 It

Figure 5. Typical dose−response curve obtained during the in vitro
model validation. Shown here are the dose−response curves for
compound 6 on the human A1 receptor. The three curves performed
in duplicate were obtained on different days. The pseudo-Hill
coefficient was determined at −1.3 (±0.1).
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is interesting to see that we were able to identify a similar hit
without the need for structural information.
Ligand Efficiency. Two of the identified novel ligands (5 and

6) showed a submicromolar affinity for (some of) the
adenosine receptor subtypes. After calculating the ligand
efficiency (LE),29 we found that these two compounds both
have a ligand efficiency higher than 0.5 kcal/mol per heavy
atom on both the human A1 and A2A receptors. Furthermore,
with the exception of compound 1 on the human A2A receptor,
all compounds have an LE higher than 0.30. Previously it has
been shown that an LE in the range of 0.30−0.40 constitutes a
good value for lead optimization.30−32 From the training set, we
also calculated the average LE (and standard deviation of this
average) for ligands for each of the receptors, which was around
0.34 (Supporting Information Table S12). These two
compounds have a much higher LE, which renders them
good starting points for the synthesis of a novel series now
being pursued by our group.
PCM versus Similarity Searching. To place the performance

of our PCM model in a broader context, several similarity
searching experiments were performed (Supporting Informa-
tion Table S13). To find four of the six hits, all compounds
with a maximal (Tanimoto) similarity of 0.60 or higher should
have been ordered; in ChemDiv, this would have been 900 data
points. However, the identification of all six hits would have
required the purchase of all compounds with a maximal
similarity of 0.30 or higher, a total of approximately 202712
data points (on average approximately 50000 compounds per
human receptor). Moreover, the similarity searching was
considerably slower than application of the PCM model.
While the PCM model takes training time before it can be
applied (3 h on a Core i7 at 2.8 GHz with 16 GB of RAM),

application afterward is very quick, screening the full 791162
compounds on all four receptors in 3 h and 29 min (30 min for
the filtered set; 100910 compounds 15% of the total) using six
threaded parallelization. Virtual screening using similarity
searching on the same machine of all 791162 compounds on
the four human receptors took 71 h and 29 min, with a total
time of 9 h and 5 min for the filtered set (six threaded
calculation parallelization). The reason likely is that the PCM
based approach requires a single calculation per data point
(compound − receptor pair), whereas for the similarity
searching, each compound requires the calculation of between
780 (hA2B) and 1661 (hA3) Tanimoto similarities (indeed,
screening for the hA2B receptor was considerably faster than the
hA3 receptor).
Likewise, we performed the decoy validation using a simple

(Tanimoto) similarity based method (compounds ranked by
maximal similarity to the training sets). Here we found that 40
of the known actives were in the top 50, with the highest
predicted decoys at rank 35, 36, 38, and 43 (Supporting
Information Table S9). However, while the PCM does not
perform significantly better, the runtime for the similarity based
approach was 6 min and 42 s (almost 10 times as long). In
addition, similarity searching will not identify novel structures,
which was the goal of this work.
These two similarity searching experiments demonstrate the

added value of PCM as it displays a better performance and
enrichment in prospective virtual screening combined with a
significantly faster screening performance.

■ CONCLUSIONS

In this work, we employed proteochemometric modeling
(PCM) in order to identify novel human adenosine receptor

Figure 6. Flowchart of the work we performed.
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ligands. By merging human and rat bioactivity data, we were
able to identify six novel compounds that bind to members of
the adenosine receptor family. One of these identified hits is
very similar to a compound that was published recently (while
we finalized this manuscript) using a structural rather than
statistical approach. These novel ligands had an average
Tanimoto similarity of 0.58 to the training set (ranging
between 0.30 and 0.80). From the results we obtained, we
conclude that PCM is capable of capturing the full ligand−
target space of a receptor subfamily rather than a single target.
We showed that the addition of chemical and target
information from orthologues can improve model quality
when compared to creating a model based on a single species
(prediction error decreased by 0.06 log units on this data set).
The ligand−targets spaces of human and rat adenosine
receptors should not be regarded as separate entities, and
these spaces in fact overlap.
With the emergence and growth of large public databases

such as ChEMBL,15 PDB,33 and Pubchem,34 the PCM
approach is likely to gain even further in momentum. In
addition, the flexibility of this method may allow its application
to other areas of drug discovery such as receptor deorphaniza-
tion or to different target families such as the prediction of
bioactivity profiles against kinases.

■ EXPERIMENTAL SECTION
Methods Overview. A flowchart of the modeling performed in

this work is shown in Figure 6. The complete work can be divided in
four major sections. First, we created six different protein descriptors
by varying the residue selection used to obtain them. Second, we
created 16 different ligand fingerprints and also varied the maximal
bond lengths in the substructures. Here we used a maximal diameter of
either four or six bonds from a central atom. The third step consisted
of finding the optimal combination of parameters for the training of
the final model. These parameters included the different descriptors,
method of cross-validation, and extended validation. The fourth and
final step was the actual screening experiment where we combined
both virtual screening and experimental validation. In the following
section, the individual procedures within each of these four blocks will
be described starting with the descriptors for both the ligand and the
receptors.
Computational Work. Data Set. The data set was obtained from

ChEMBL 2.15 From this database, we selected all compounds that
were tested on either human or rat adenosine receptors or both
(Supporting Information Table S2). The selection was further
narrowed to only include compounds for which a Ki value obtained
from a radioligand binding assay was available. After selection, the
compounds were normalized and ionized at pH 7.4, they were
assigned 2D coordinates, and subsequently converted to fingerprints.
All steps of this work were performed in Pipeline Pilot Student Edition
version 6.1.5.35

The receptor sequences were obtained from Uniprot and aligned
using ClustalW (Slow alignment, Gap Open 4, Gap Extend 4, available
as Supporting Information).36 This alignment was used to convert
residues selected from the crystal structure to their orthologue and
paralogue counterparts. The residues selected by the TEA approach
are provided in Ballesteros−Weinstein numbers and could be used
directly.37 After selection of the residues, they were converted to a
feature based protein fingerprint based on their single letter amino acid
codes as we have done in previous work.10

Descriptor Benchmarking Approach. Before we could train our
final predictive model, we sampled a multitude of parameters. We
collected six selection methods to define our binding site residues
(Supporting Information Figure S3 and Table S3), 16 different types
of circular fingerprints (Supporting Information Figure S4 and Table
S4), and four different folds of cross-validation (CV) (Supporting
Information Figure S5). From these options, we wanted to select the

optimal combination of variables. To identify the best combination, all
models were built on 70% of the data set (7749 data points) and
validated on the remaining 30% (3250 data points). From the learning
curves, we already knew that this split was the optimal partition
(Supporting Information Figure S6).

Protein Descriptors. Sequences were encoded based on the binding
site sequence in which each amino acid was represented as a single
unique feature as was done in previous work.10 However, these
residues were selected in seven different ways and each selection was
tested to find the best option to be used in the final model
(Supporting Information Figure S3). The first two selection methods
(1 and 2 in Figure 6 were based on the crystal structure of the
adenosine A2A receptor bound to ZM241385 (PDB code 3EML).19

Herein all residues were selected, having any atom within either a 5 Å
or a 7 Å sphere around the cocrystallized ligand. The third and fourth
selection methods (3 and 4 in Figure 6) were based on a
bioinformatics approach known as two entropy analysis (TEA).20

This method relies on quantifying the degree to which transmembrane
(TM) residues are conserved among class A GPCRs. Both the degree
of conservation among GPCR subfamilies and the degree of
conservation among the whole family were calculated. This calculation
then serves as a basis to differentiate the function residues perform in
individual GPCRs based on the difference between these degrees of
conservation. Here we used a conservative approach (TEA S), which
was small, and a less restricted selection method (TEA L), which was
larger and included some of the residues from the “mixed region”
mentioned in the original publication.20 The fifth method (TEA S5, 5
in Figure 6) was based on a combination of 1 and 3, the sixth method
(TEA L5, 6 in Figure 6) was based on a combination of method 1 and
4. Finally, the seventh method consisted of simply using al TM
residues. During this optimization, the ligand descriptor ECFP_4 was
used (see Compound Descriptors for further details).

The features describing the binding site were obtained by hashing
an array of 58 physicochemical properties obtained from the AAindex
database;38 the indices employed can be found in Supporting
Information Table S14. Finally, protein fingerprints were converted
to an array of 175 features (Supporting Information Figure S13),
which were then used in the modeling using Pipeline Pilot version
8.5.23

Compound Descriptors. All descriptors were calculated in the
academic version of PipelinePilot 6.1.5.35 In the final model, ligands
were described by Scitegic circular fingerprints (SCFP_4 type),39,40

which have previously been shown to capture a large amount of
information with respect to compound bioactivity.21 SCFP_4
descriptors provided individual substructures and treated these as a
feature of a compound. We found them to perform the best and most
consistently (Supporting Information Figure S4). These substructures
have a maximal diameter of four bonds from a central atom. Finally,
ligand fingerprints were converted to an array of 175 features, which
were then used in the modeling (Supporting Information Figure S13).

Machine Learning. Models were constructed in the academic
version of Pipeline Pilot 6.1.5 using the R-statistics package. Support
vector machines (SVM) as coded in the e1071 package were used for
model creation.41 Parameters γ and cost were tuned over an
exponential range, and ε was set at 0.1. The optimal model was
determined using cross-validation before proceeding to experimental
prospective validation of the model. The parameters used for
validation were R0

2, R2, and RMSE.42,43

In Silico Validation. We performed four different in silico validation
experiments. First, a learning curve was generated to spot possible
discontinuous randomized splits data points, prevent overtraining, and
obtain an estimate of maximal performance that can be obtained on
this data set (Supporting Information Figure S6). Second, the obtained
final model was subjected to external validation, applying the model to
previously unseen compounds not part of our training set (Supporting
Information Figure S9). Third, the model was applied to a decoy set
validation to check performance in identifying unseen known actives
from decoys (Supporting Information Figure S10). This decoy set
consisted of random selection of compounds from the ZINC database
selected to resemble adenosine receptor ligands based on their
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physicochemical properties. These properties included molecular
weight, number of hydrogen bond donors/acceptors, number of
aromatic rings, calculated AlogP, average bond length, number of
atoms, number of rotatable bonds, and formal charge (Supporting
Information Figure S14). Finally y-scrambling was performed to
estimate the possibility of chance correlations (Supporting Information
Figure S11).
Virtual Screening. Subsequent to our model validation, we

performed a virtual screening. We screened all compounds available
in the ChemDiv database obtained via ZINC (accessed December 3,
2009, consisting of 791162 compounds) without any form of
prefiltering as we wanted a fair estimate of true model performance.44

The main advantage of our statistical method is its throughput;
typically one can screen the full ChemDiv database within 4 h on a
desktop machine (core i7 at 2.8 GHz with 16 GB RAM). In this case,
we screened 791162 compounds on the four human adenosine
receptors (3164648 data points).
Selection Filters. On the resulting model output, several filters were

applied: molecular solubility larger than −4 (solubility expressed as log
S with S in mol/L)45 and AlogP between −0.4 and 5.6.46 This reduced
the number of data points from 3164648 to 403640. The filtering
could also very well have been applied before screening, but we wanted
to see if our technique was capable of screening such a large number of
compounds in a reasonable time. While more than 400000 data points
still represented a significant number, the next step was binning and
diversity clustering based on the chemistry of the compounds.
Binning. Subsequent to the classification ranking, compounds were

binned in the following classes: predicted pKi between 5.0 and 6.0 (bin
1; 180419 data points), predicted pKi between 6.0 and 7.0 (bin 2;
19314 data points), and predicted pKi larger than 7.0 (bin 3; 2875 data
points). The remainder was predicted to have a pKi smaller than 5.0
(201032 data points) and were discarded together with those
compounds not meeting the earlier physicochemical filters.
Clustering. Clustering was subsequently performed using the

pipeline pilot component “Cluster Molecules” on the individual bins
with the aim of creating subsets containing different chemistry (bin 1,
10 clusters for each receptor; bin 2, 9 clusters for each receptor; bin 3,
6 clusters for each receptor). The descriptor used was identical to the
one we used to train the final models and the similarity coefficient used
as the Tanimoto coefficient. For details about the obtained clusters,
see Supporting Information Tables S15−S18. Bin 3 was to serve as a
pool to select compounds for experimental validation. Note that bin 3
is much larger in the case of the human adenosine A3 receptor; this
could indicate that the model is better able to find high affinity
compounds for the human A3 receptor. However, it is more likely that
this indicates that the model is not able to accurately model the
bioactivity space for this receptor, in particular when we consider the
previously low hit rate in other studies on that receptor and the large
dissimilarity to the rat A3 receptor.
Final Compound Selection. Finally, compounds to be ordered

were selected manually from bin 3 for each receptor (predicted pKi
larger than 7) with a focus on the selection of novel chemotypes. In
total, 54 compounds were selected (Supporting Information Table S10
and SD file).
These compounds were selected from different clusters (these

clusters are indicated in bold in Supporting Information Tables S15−
S18 and are also present in the Supporting Information SD file). The
ignored clusters represented clusters that contained the remaining
compounds (junk clusters) in the case of the human A1, human A2A
and human A3 receptor. In the case of human A2B receptor, the
ignored cluster contained a number of compounds that were
chemically very similar to compounds already selected for the hA1
and hA2A receptors (and were hence already going to be tested in the
hA2B receptor).
The compounds selected included both compounds that were

predicted to be active on multiple receptors (like compound 5,
predicted to be active on all four human receptors) and compounds
predicted to be selective (like compound 3, predicted to be active on
hA2A and hA2B). These compounds were subsequently ordered and
tested in vitro on all receptors (216 data points), one compound (55

in Supporting Information Table S10) could not be ordered as it was
unavailable from the supplier. 1H NMR and MS data are included in
the Supporting Information for the found hits.

Ligand Efficiency. Ligand efficiency (LE),29,31,47 expressed in kcal/
mol per heavy atom, was calculated according to eq 1.

= Δ ‐G NLE / non hydrogen atoms (1)

To obtain ΔG, we used eq 2. ΔG was converted to kcal/mol.

Δ = − ·G RT Kln i (2)

Similarity Searching. All similarity searching experiments were
performed in Pipeline Pilot version 8.5.23 The Pipeline pilot similarity
searching component was used, and the search was done using
SCFP_4 fingerprints. The component was optimized for speed rather
than memory use, and screening was done in parallel using six threads
on a core i7 machine. For each receptor subtype, the subset of the
training set regarding that subtype was used as reference compounds.
For example, to identify similar compounds for the human A1
receptor, we used the human A1 receptor annotated compounds
from ChEMBL 2.

Binding Studies. [3H]DPCPX and [3H]ZM241385 (4-(2-[7-
amino-2-(2-furyl)[1,2,4]triazolo[2,3-α][1,3,5]triazin-5-ylamino]ethyl)-
phenol) were purchased from ARC Inc., St. Louis, MO, USA.
[3H]PSB603 and [3H]PSB11 were kind gifts from Prof C. E. Müller
(Bonn, Germany). Chinese hamster ovary (CHO) cells expressing the
human adenosine A1 receptor were provided by Dr. Andrea
Townsend-Nicholson, University College of London, UK. Human
embryonic kidney (HEK) 293 cells stably expressing the human
adenosine A2A and human A3 receptor were gifts from Dr. Wang
(Biogen) and Dr. K.-N. Klotz (University of Wu ́̈rzburg, Germany),
respectively. CHO cells expressing the human A2B receptor were
provided by Dr. Steve Rees (GlaxoSmithKline, UK). Dose−response
curves for the found hits are included in the Supporting Information.

Human Adenosine A1 Receptor. Affinity at the A1 receptor was
determined on membranes from CHO cells expressing the human
receptors, using [3H]DPCPX as the radioligand. Membranes
containing 5 μg of protein were incubated in a total volume of 100
μL of 50 mM Tris·HCl (pH 7.4) and [3H]DPCPX (final
concentration 1.6 nM) for 1 h at 25 °C in a shaking water bath.
Nonspecific binding was determined in the presence of 100 μM CPA.
The incubation was terminated by filtration over prewetted Whatman
GF/B filters under reduced pressure with a Brandel harvester. Filters
were washed three times with ice-cold buffer and placed in scintillation
vials. Emulsifier Safe (3.5 mL) was added, and after 2 h radioactivity
was counted in a TriCarb 2900TR liquid scintillation counter.

Human Adenosine A2A Receptor. At the A2A receptor, affinity was
determined on membranes from HEK 293 cells stably expressing this
human receptor, using [3H]ZM241385 as the radioligand. Membranes
containing 40 μg of protein were incubated in a total volume of 100
μL of 50 mM Tris·HCl (pH 7.4) and [3H]ZM241385 (final
concentration 1.7 nM) for 2 h at 25 °C in a shaking water bath.
Nonspecific binding was determined in the presence of 100 μM
CGS21680. The incubation was terminated by filtration over
prewetted Whatman GF/B filters under reduced pressure with a
Brandel harvester. Filters were washed three times with ice-cold buffer
and placed in scintillation vials. Emulsifier Safe (3.5 mL) was added,
and after 2 h radioactivity was counted in a TriCarb 2900TR liquid
scintillation counter.

Human Adenosine A2B Receptor. At the A2B receptor, radioligand
displacement was determined on membranes from CHO cells stably
transfected with human A2B receptor, using [3H]PBS603 as the
radioligand. Membranes containing 15 μg of protein were incubated in
a total volume of 100 μL of 50 mM Tris·HCl (pH 7.4), 1U/mL ADA,
0.1 w/v % CHAPS (pH 8.2 at 5 °C), and [3H]PBS603 (final
concentration 1.0 nM) for 2 h at 25 °C in a shaking water bath.
Nonspecific binding was determined in the presence of 100 μM
NECA. The incubation was terminated by filtration over prewetted
Whatman GF/C filters under reduced pressure with a Brandel
harvester. Filters were washed three times with ice-cold 50 mM
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Tris·HCl, pH 7.4, + 0.1% BSA buffer and placed in scintillation vials.
Emulsifier Safe (3.5 mL) was added, and after 5 h radioactivity was
counted in a TriCarb 2900TR liquid scintillation counter.
Human Adenosine A3 Receptor. The affinity at the A3 receptor was

measured on membranes from HEK 293 cells stably expressing the
human A3 receptor, using [3H]PSB11 as the radioligand. Membranes
containing 25 μg of protein were incubated in a total volume of 100
μL of 50 mM Tris·HCl, 10 mM MgCl2, 1 mM EDTA, 0.01% CHAPS
(pH 7.4), and [3H]PSB11 (final concentration 4 nM) for 1 h at 37 °C
in a shaking water bath. Nonspecific binding was determined in the
presence of 100 μM R-PIA. The incubation was terminated by
filtration over prewetted Whatman GF/B filters under reduced
pressure with a Brandel harvester. Filters were washed three times
with ice-cold buffer and placed in scintillation vials. Radioactivity was
counted in a Wallac 1470 Wizard gamma counter.
Data Analysis. Ki values were calculated using a nonlinear

regression curve-fitting program (GraphPad Prism 5.0).27 Ki values
of radioligands were 1.6, 1.7, 0.41, and 4.9 nM for [3H]DPCPX,
[3H]ZM241385, [3H]PSB603, and [3H]PSB11, respectively.
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